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THE STATISTICAL ANALYSIS OF POPULATION GROWTH
RATES CALCULATED FROM SCHEDULES OF
SURVIVORSHIP AND FECUNDITY!

RicHARD E. LENSKI AND PHILIP M. SERVICE
Department of Zoology, University of North Carolina, Chapel Hill,
North Carolina 27514 USA

Abstract. Population growth rates can be estimated from sample cohort schedules of survivorship
and fecundity, but the variation inherent in these estimates has received little attention. We define an
ideal population such that it is completely described by the probabilities governing age-specific sur-
vival and reproduction. We define the lifetime contribution of an individual to population growth in
a manner analogous to Fisher’s (1930) reproductive value. The mean of these individual contributions
is equal to the finite rate of increase for the population. We then investigate the properties of sample
cohorts drawn from an ideal population. Estimates of population growth rates that are based on
sample cohorts are shown to be biased. The magnitude of the bias decreases as the number of
individuals used to construct the sample schedules of survivorship and fecundity is increased. This
relationship conflicts with the statistical desirability of maximizing the number of estimates of the
population growth rate. Bias can be reduced by pooling individual schedules to calculate a single
estimate of the growth rate of the population within which individual contributions are defined. When
cohort size is small, we recommend a modified jackknifing procedure for further reducing bias. To
demonstrate the application of these methods, we obtain a 95% confidence interval for a rate of

increase based on a sample cohort of aphids.

Key words:
productive value; stable-age equation.

INTRODUCTION

The comparative study of population growth rates
can suggest environmental and genetic factors that in-
fluence the distribution and abundance of organisms
(e.g., Birch 1953a, 1953b). Age-specific schedules of
survivorship and fecundity provide a basis for calcu-
lating rates of population growth (Lotka 1925, Fisher
1930, Leslie 1945, 1948, Goodman 1968, Michod and
Anderson 1980). It is unfortunate that the variation
inherent in estimates of population growth rates has
received only limited attention (Keyfitz 1968), and has
been generally ignored by ecologists.

The purpose of this paper is to explore the statistical
properties of population growth rates calculated from
schedules of survivorship and fecundity. First, we
consider ideal populations for which the true proba-
bilities governing age-specific survival and reproduc-
tion are known. The finite rate of increase is shown to
equal the mean lifetime contribution of individuals to
population growth. We provide a formulation for the
variance associated with this mean contribution. Sec-
ond, we investigate the properties of sample cohorts
drawn from ideal populations. Estimates of population
growth rates based on sample cohort schedules of sur-
vivorship and fecundity are shown to be biased. We
compare several methods of estimation using the cri-
teria of accuracy, power, fairness, and facility.

There are widespread differences in demographic

! Manuscript received 5 March 1981; revised 14 September
1981; accepted 20 October 1981.

bias; demography, estimation; jackknife; population growth; rate of increase; re-

notation. Because our emphasis is statistical, we fol-
low the convention of using the Greek alphabet to in-
dicate population parameters and the Roman alphabet
to indicate observations and sample statistics. We
have chosen symbols to make the presentation of this
paper as logical as possible, and we have ignored
usage that, though widespread, might be confusing in
the context of this paper.

Lotka (1925) has shown that if age-specific sched-
ules of survivorship and fecundity remain constant
through time, a population will approach a stable age
distribution, regardless of its initial age distribution.
Lotka (1925) and Fisher (1930) considered schedules
of survivorship and fecundity wherein age is a contin-
uous variable. Many subsequent demographers (e.g.,
Goodman 1968) have treated age as a discrete variable.
There are several justifications for the latter approach.
Many organisms reproduce at discrete intervals (e.g.,
seasonally). Even with organisms whose breeding is
effectively continuous, observations are restricted to
discrete intervals. If intervals between observations
are sufficiently short, the discrete approach closely
approximates the continuous approach (Leslie 1945).

The finite rate of increase of a population, ¢, can be
calculated from age-specific schedules of survivorship
and fecundity in the following manner (Goodman 1968,
Michod and Anderson 1980). Let o, be the proportion
of all females in age-class 0 that survive to age-class
x. Let B, be the mean number of female offspring born
to all females in age-class x, excluding offspring that
do not survive to enter age-class 0 (at which time the
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Fic. 1. Example of an ideal population. The probabilities
governing age-specific survival and reproduction are pre-
sented as a branching process. Note that there are five pos-
sible sequences, or lives, and that each of these lives is equal-
ly probable for any female entering age-class 0. All offspring
are female and survive to enter age-class 0.

female parents would enter age-class x + 1). Then the
finite rate of increase can be calculated iteratively from
the stable-age equation

©

1= 6700, s M
=0
It is not necessary to calculate explicitly the stable age
distribution; however, the stable age distribution is im-
plicit in this formulation.

Age-specific survivorships and fecundities are av-
erages, and there will be variation among individuals
in their contribution to population growth. Therefore,
a complete understanding of population growth re-
quires a probabilistic, rather than a deterministic, ap-
proach. Unlike those used in most other stochastic
population models (e.g., Pollard 1966), our units of
chance are not demographic events (i.e., births and
deaths), but instead are individual lives.

ANALYSIS AND RESULTS
Ideal populations

We define an ideal population as the statistical uni-
verse whose parameters we seek to infer by sampling
a cohort of individuals and observing age-specific sur-
vivorships and fecundities. We define a /ife as the tem-
poral sequence of survival and reproduction experi-
enced by an individual. The probabilities governing
survival and reproduction for individuals of all ages
uniquely determine the frequencies of all lives within
an ideal population. These probabilities are constant
through time, so that the ideal population possesses
a stable age distribution. The rate of increase for an
ideal population is obtained by Eq. 1.
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An example of an ideal population is shown in Fig.
1. The probabilities of survival and reproduction for
females of all ages are presented as a branching pro-
cess. In this example, there are five equally probable
sequences, or lives; this can be verified by computing
the product of all probabilities leading to each end
point. We define ; as the probability of experiencing
life i for any female entering age-class 0. Note that no
heritable variation among individuals is implied; dif-
ferences in individual contributions to population
growth are assumed to be stochastic.

Schedules of survivorship and fecundity can be
drawn up for each life, just as they can for the popu-
lation as a whole. However, in schedules for individual
lives, survivorships and fecundities are restricted to
integer values. The survivorship of an individual of
life i to age-class x is S,;. The fecundity of an individ-
ual of life i in age-class x is B,;. Note that if S;; =0
then B,; = 0. Since population fecundity B, is defined
per female alive in age-class x, then

Bz = 2 7By loy.

Table 1 shows the survivorship and fecundity sched-
ules for each life and for the population, from the ex-
ample in Fig. 1.

Fisher (1930:27) asked: ‘‘To what extent will [indi-
viduals in age-class x], on the average, contribute to
the ancestry of future generations?’’ Fisher demon-
strated that the value of an offspring produced at age
x + 1 must be discounted by a factor of ¢ relative to
an offspring produced at age x. This discounting is in
recognition of the fact that a later offspring constitutes
a smaller fraction of a growing population (Fisher
1930, Roughgarden 1979). Fisher defined this age-spe-
cific reproductive value in a relative fashion, such that
the reproductive value for age-class 0 equals one.

We ask: to what extent will individuals experiencing
life i, on the average, contribute to the ancestry of
future generations? We define the lifetime contribution
of an individual to population growth, ¢;, as the sum
of an individual’s fecundities discounted by the pop-
ulation’s growth rate. That is,

¢ = i ¢ By;. @)
z=0

By virtue of our choice for the negative exponent in
Eq. 2, the mean of the individual lifetime contribu-
tions equals the finite rate of population growth:

E mdi = .
See Proof 1 in the Appendix. The contributions for
the lives defined by our example of an ideal popula-
tion are shown in Table 1. It is a simple mattex to
compute the true population variance of these life-
time contributions:

var(¢;) = 2(4’1 — ¢)’m;.
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TaBLE 1. Schedules of survivorship and fecundity for each life and for the population defined by the probabilities in Fig. 1.

Life i m Sa By S By S By S & F,
1 2 1 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 1 1
3 2 1 1 1 0 0 0 0 1 1
4 2 1 1 1 1 0 0 0 1.8708 1.6180
5 2 1 1 1 1 1 0 0 1.8708 1.6180
Population 1 8 6 6667 2 0 0 1.1483 1.0472

In our example, the mean lifetime contribution of in-
dividuals to population growth (i.e., the finite rate of
increase) is =1.1483, with a variance of ~0.4813.

Many natural populations do not even approximate
ideal populations, and it may be difficult to observe
populations in their natural setting. It is more often
convenient to sample individuals not from all age-
classes, but from a set of new offspring. These off-
spring form a cohort, and their lives are observed un-
der a specified set of conditions. Therefore, let us now
turn our attention away from calculating the mean life-
time contribution and its variance for an ideal popu-
lation, and consider the problem of estimating these
parameters from a sample cohort.

Sample cohorts

One of the basic principles of inductive statistics is
that the strength of an inference about some popula-
tion parameter increases with the number of indepen-
dent sample observations. Yet ecological researchers
are subject to limited resources, including the avail-
ability of experimental organisms. Therefore, obtain-
ing many estimates of the rate of increase, each based
on a few individuals, will be a more powerful esti-
mation procedure (i.e., provide more degrees of free-
dom) than obtaining a few estimates, each based on
many individuals. When constructing schedules of
survivorship and fecundity from a sample cohort, in-
dividual lives can be observed independently, given
proper experimental design. A plausible methodology
is to compute a rate of increase for each individual,
F;, based on its schedule of survivorship and fecun-
dity: ,

1= i F,~=+vB_ ..

=0

which is identical to

F; :zoFiizB.m" 3)

(It is better to compute the finite rate of increase than
the instantaneous rate of increase, since the latter will
be undefined for any individual who dies without re-
producing.) As Smith (1963:657) notes, ‘‘This rate ap-
plies to an imaginary stable-age-distribution popula-
tion of individuals all exactly like the one followed.”’

We can compute a finite rate of increase F; for any

life. The values of F; for each of the lives defined by
the probabilities in Fig. 1 are given in Table 1. Drawing
a sample cohort from any ideal population, the ex-
pected mean value for the F; is

E(F) = 2 w F;

recall that 7; is the probability of experiencing life i
for individuals sampled from age-class 0. In our ex-
ample, there are five equally probable lives, and the
expected mean of the F; is =1.0472. Note that this
does not equal the true population finite rate of in-
crease, ¢, which is =~1.1483. In fact, the mean of these
individual rates is a biased estimator of the population
rate; the definition of an unbiased estimator is that
‘“‘the mean of its sampling distribution is exactly equal
to the value of the parameter being estimated’’ (Bla-
lock 1972:202). This bias occurs in samples drawn from
all but the most trivial ideal populations (e.g., wherein
all females experience identical lives), and may be
positive or negative depending on the ideal population.

Let us also compare the variance in the F; with the
variance in the ¢;. Consider an ideal population in
which there are two lives, such that ¢, > ¢,. Individ-
uals with the higher ¢, are subject to more severe
discounting, when calculating F;, than are individuals
with the lower ¢,. That is,

$=F,>¢>F,= ¢,

See Proof 2 in the Appendix. Therefore, a set of F;
will be less variable than a corresponding set of ¢,
i.e., var(F;) < var(¢;). Underestimating the variance
among individual lives wrongly inflates one’s confi-
dence in an estimate of ¢ based on observed F;. Not
only is the mean of the F; a biased estimator of the
finite rate of increase, but the variance of the F; is too
small.

Just as it was possible to compute a rate of increase
based on one life, we can compute a rate of increase
corresponding to any combination of lives. Let N be
the number of individuals in a sample cohort. Let S,
and B, be the average age-specific survivorships and
fecundities, respectively, within the sample. Then we
can estimate the finite rate of increase iteratively :gi\ng

1= i FNi(x_H)EzEz, (4)

x=0
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TaBLE 2. Individual and cohort schedules of survivorship and fecundity for a sample of 18 aphids.

Individual Soi By S By Sai By Sai By S By St By Sei B S By
1 1 0 1 0 1 0 1 3 1 4 1 5 1 2 1 1
2 1 0 1 0 1 2 1 6 1 1 1 1 1 3 1 2
3 1 0 0 0 0 0 0 0 0
4 1 0 1 0 1 0 1 4 1 2 1 2 1 2 1 1
5 1 0 1 0 1 0 1 0 1 2 1 1 0 e 0 -
6 1 0 0 0 0 0 0 0 0
7 1 0 1 0 1 2 1 5 1 3 1 3 1 1 1 1
8 1 0 0 0 0 0 0 0 0
9 1 0 1 0 1 0 1 7 1 2 1 3 1 3 1 0
10 1 0 1 0 1 5 1 7 1 5 1 5 1 2 1 2
11 1 0 1 0 1 1 1 5 1 6 1 3 1 1 1 0
12 1 0 1 0 1 7 1 6 1 6 1 6 1 3 1 3
13 1 0 1 0 1 1 1 6 1 3 1 3 1 1 0 -
14 1 0 1 0 1 0 1 4 1 7 1 2 1 4 1 3
15 1 0 1 (\] 1 0 1 6 1 4 1 5 1 0 0 R
16 1 0 1 0 0 0 0 0 0 0
17 1 0 1 0 1 0 1 3 1 2 1 3 1 1 1 3
18 1 0 1 0 1 0 1 0 1 2 1 2 1 2 1 0
Cohort
S. 1 .8333 7778 1778 7778 7778 7222 6111
B, 0 0 1.2857 4.4286 3.5000 3.1429 1.9231 1.4545

where Fy is the sample estimate of ¢. Given any ideal
population, the joint probability of each possible com-
bination of N lives can be calculated from the proba-
bilities of the constituent lives, assuming random sam-
pling from age-class 0. In Fig. 2, the expected value
for Fy is given for sample cohorts of one, two, three,
four, five, and six individuals drawn from the ideal

.16

o = = =
@ (@] N H

Expected Estimate of ¢

o
o

-

1 | ! 1 1
| 2 3 4 5

Sample Size (N)

.04

FiG. 2. Bias in the estimation of ¢ for samples of var-
ious sizes drawn from the ideal population shown in Fig. 1.
Shown above are E(Fy) = @ and NE(Fy) — (N — 1)
E(Fy_) = A.

population shown in Fig. 1. Use of the stable-age
equation, for any finite sample cohort, generates a
biased estimate of the true rate of increase of the ideal
population. The magnitude of the bias decreases as
the number of individuals used to construct the sample
schedules of survivorship and fecundity is increased.
This relationship conflicts with the statistical desir-
ability of maximizing the number of independent es-
timates of the parameter ¢.

What is the source of this bias? The problem is sim-
ilar to that of estimating a population variance from
sample observations. The average of the squared de-
viations is a biased estimator of the true population
variance (Fisher 1920), because the squared deviations
cannot be calculated independently of the mean. The
bias in the stable-age equation arises because the dis-
counting factors (i.e., ¢~*) cannot be estimated inde-
pendently of the age-specific survivorships and fe-
cundities using sample cohort data.

Compare Egs. 2 and 3. The lifetime contribution of
an individual, ¢;, is defined only within the context of
an ideal population which has a specified rate of
growth ¢. The rate of increase calculated for an indi-
vidual, F;, is a poor estimate of the lifetime contri-
bution of that individual, since it utilizes minimal in-
formation about the growth rate of the population.

Say that we have observed the lives of a sample
cohort of N individuals. Fy is a more accurate esti-
mator of ¢ than is F, by virtue of the relationship
between bias and sample cohort size. Moreover, Fy
gives a better estimate of the discounting factor~ap-
plicable to an individual’s contribution than does the
rate of increase calculated from that individual. There-
fore, we can estimate the lifetime contribution of an
individual to population growth, F’;, using Fy as a
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SBi BBi sm BQI' sl()i BlOi Sll{ Blli SlZi B12i Slsi Bli}l Fi F’l F*l F”i
1 1 0 L 0 ce 0 <o 0 . 0 1.6719 1.6268 1.6702 1.6309
1 0 1 0 1 0 1 0 0 . 0 1.8283 2.3465 1.8350 2.3525
0 0 0 0 0 0 0 0 1.3068 0
1 0 1 0 0 c 0 cos 0 . 0 1.6061 1.3498 1.6073 1.3533
0 R 0 - 0 c.. 0 . 0 c. 0 1.2298 3231 1.3773 .3239
0 0 0 0 0 0 0 0 1.3068 0
1 0 1 0 1 0 1 0 0 .. 0 1.8393 2.4199 1.8520 2.4261
0 0 0 0 0 0 0 0 1.3068 0
0 0 A 0 . 0 <o 0 c. 0 1.7624 2.0707 1.7722 2.0759
1 1 1 0 0 A 0 . e 0 c 0 2.1528 4.3808 2.3120 4.3919
1 0 0 . 0 A 0 ces 0 e 0 1.8282 2.4146 1.8516 2.4207
0 c. 0 . 0 c. 0 R 0 L (\] 2.2585 5.1301 2.4908 5.1431
0 c 0 L. 0 B 0 cen 0 “en 0 1.8027 2.2506 1.8133 2.2563
1 2 1 1 0 B 0 . 0 c. 0 1.7683 2.1530 1.7922 2.1585
0 S 0 N 0 N 0 R 0 . 0 1.7716 2.1262 1.7851 2.1316
0 0 0 0 0 0 0 0 1.3068 0
1 0 0 e 0 . 0 R 0 B 0 1.5785 1.2224 1.5781 1.2255
1 0 1 0 1 0 1 0 1 0 0 1.3549 .4850 1.4124 4863

.5000 3333 1667 1667 .0556 0 Fy = 1.6833

4444 .1667 0 0 0

common discounting factor:
F'y = Fy *By.
r=0

The mean of these estimated contributions is equal to
the estimated finite rate of population growth, i.e.,
F’ = Fy. As N is increased, Fy approaches ¢, and
each F’; approaches ¢;. Therefore, the variance as-
sociated with the F'; will approach the true variance
of the ¢; in the ideal population.

When the bias of an estimator is some monotoni-
cally decreasing function of sample size, as it is for
Fy, a statistical technique known as the ‘‘jackknife’’
can be used to generate a new estimator that is less
biased. Keyfitz (1968) suggested the applicability of
this technique to estimating demographic parameters.
If Fy is the estimate of ¢ based on a sample cohort of
N lives, let F_; be the estimate of ¢ based on that
sample omitting life i. Then the ‘‘pseudovalue’” F*; is
defined by

F*, = NFy — (N — DF_,

and the mean of the N pseudovalues is an estimator
of ¢. The expected value of this mean is

E(F*) = NE(Fy) — (N — DE(Fy-y).

The expected values for F* for samples of two, three,
four, five, and six lives, drawn from the ideal popu-
lation in Fig. 1, are shown in Fig. 2. Jackknifing re-
duces the bias in estimating ¢, as anticipated.
Unfortunately, the variance among the pseudoval-
ues is an underestimate of var(¢;), just as var(F;) was.
See Proof 3 in the Appendix. We can circumvent this
problem by defining another estimate of an individu-
al’s lifetime contribution, F”;, which takes into ac-

count the reduced bias of F* relative to F':
F", = F',(F*/F").
F” is identical to F*, but the F”; provide a fairer es-

timate of the true variation among individual contri-
butions to population growth.

AN APPLICATION

In order to clarify computations required by the var-
ious methodologies, we focus on the problem of ob-
taining a 95% confidence interval for an estimate of ¢
based on a sample cohort of 18 aphids (Uroleucon
rudbeckiae). Each aphid’s survival and reproduction
were observed daily, but we have collapsed the data
into 5-d age-classes to facilitate calculations for this
example. The individual schedules of survivorship and
fecundity are shown in Table 2; sample statistics are
presented in Table 3. The relative merits of the meth-
odologies will be summarized in the Discussion.

Estimating ¢ with F
1) Calculate the rate of increase F; for each individual:
1= i F,~=+B_..
x=0

2) Compute the sample mean and variance of the Fj:

F =3 FIN

var(Fy) = 3, (F; — F)Y/(N — D).

Estimating ¢ with F’
1) Calculate sample cohort survivorships and fecundi-
ties for all ages:
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TABLE 3. §umrhary from application presented in Table 2.
Confidence intervals assume values are normally distrib-
uted. 745 = 2.110; df = 17.

95% confidence

Mean Variance interval
F 1.3585 0.6129 0.9692-1.7478
F’ 1.6833 2.1476 0.9545-2.4121
F* 1.6876 0.1132 1.5203-1.8549
F 1.6876 2.1586 0.9569-2.4183
S: = SulN
i

B, =3 B,i/(NS,).
2) Calculate the sample cohort rate of increase Fjy:

1= 2 F~—(z+1>§m§1_
r=0
3) Calculate each individual’s contribution, F';, to the
cohort rate of increase:

F'; =S Fy B,

xr=0

4) Compute the sample mean and variance of the F’;:

F' =3 FYIN
i

var(F') = 3 (F; = F'P/(N - 1).

1

Estimating ¢ with F*

1) Calculate F as above.

2) Remove one individual from the sample cohort.
Compute survivorships, fecundities, and rate of in-
crease for this subset of N — 1 individuals, denot-
ing the new rate of increase by F_;.

3) Calculate the pseudovalue F' *

F* = NFy — (N — DF_,.

4) Repeat steps 2 and 3 for each individual, generating
N pseudovalues. )
5) Compute the sample mean and variance of the F*;:

1

var(F¥) = 2 (F* — F*2/(N — 1).

Estimating ¢ with F

1) Calculate the F';, F’, and F* as above.
2) Calculate each individual’s contribution, F";, to the
cohort rate of increase:

F"; = F'(F*IF").

3) Compute the sample mean and variance of the F";:

RICHARD E. LENSKI AND PHILIP M. SERVICE
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F =3 FiIN

var(F) = 3 (F'; — F2I(N — 1).

DiscussioN

The rate of a population’s growth under specified
conditions can be estimated from schedules of survi-
vorship and fecundity based on a sample cohort. Eq.
4 provides an estimator, Fy, of the finite rate of in-
crease ¢, which is widely used by population biolo-
gists. It is unfortunate that use of this estimator yields
no information about the variation among the obser-
vations used to generate an estimate, and hence the
estimator is not suitable for statistical analysis. In the
preceding pages, we have presented four other esti-
mators of ¢, each of which is the mean of N values
calculated from the independently observed lives of
N organisms. These estimators can be compared in
terms of four desirable characteristics: (1) accuracy,
i.e., smallest bias associated with the estimator; (2)
power, i.e., most degrees of freedom; (3) fairness, i.e.,
accuracy of the estimated variance among individuals;
and (4) facility, i.e., fewest number of iterative solu-
tions required.

F’ is a more accurate estimator of ¢ than is F. Both
F” and F yield N — 1 degrees of freedom. However,
the variance among the F; is an underestimate of the
true variation among individual contributions to pop-
ulation growth. All of the F’; can be calculated with
a single iterative solution, while N iterative solutions
are required to obtain all of the F;. By all of these
criteria, F’ is equal or superior to F as an estimator
of the finite rate of increase.

F* and F” produce identical estimates of ¢. Both F*
and F” have N — 1 associated degrees of freedom,
and both require N + 1 iterative solutions. Because
of a superior estimate of the variance among individual
contributions, the F”; are preferable to the F*;.

F" gives a more accurate estimate of ¢ than does
F’. Both methodologies allow N — 1 degrees of free-
dom, and both give fair estimates of the variation
among individuals. Only one iterative solution is nec-
essary to calculate all of the F';, while N + 1 are re-
quired to compute all of the F";. Because the bias of
either estimator is likely to be quite small for even
moderate sample sizes, we recommend general usage
of the readily calculable F’;. However, for small sam-
ple cohorts, the additional computational effort re-
quired for F” is justified by the reduced bias in esti-
mating ¢.

So far we have only considered the problem of es-
timating ¢ for a population, although this is clearly
related to the problem of comparing estimates among
populations. Consider the null hypothesis that the fi-
nite growth rates of two populations are equal, i.e.,
¢4 = ¢z, vs. the alternative that the population rates
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are not équa‘l. When estimating individual contribu-
tions, should we assume a common discounting factor,
or should we compute separate discounting factors for
each sample? If the null hypothesis is true, use of a
common discounting factor is appropriate and should
yield a common estimate of ¢ (with less bias than if
separate discounting factors were used, each based on
a smaller sample size). If the null hypothesis is false,
the expected difference between the sample mean con-
tributions will be greater if a common discounting fac-
tor is used. In either case, use of a common discount-
ing factor increases the likelihood of supporting the
correct hypothesis.

In the first use of the methodology recommended in
this paper, we (Service and Lenski, in press) used
a total of only 144 aphids (Uroleucon rudbeckiae).
Yet we demonstrated several significant differences in
rates of increase which support the hypothesis that
diversity can be maintained by differential success in a
heterogeneous environment. The use of individual con-
tributions provides an accurate, powerful, fair, simple,
and intuitive methodology for statistically analyzing
population growth rates estimated from sample cohort
schedules of survivorship and fecundity. It is im-
portant to apply rigorous statistical criteria to infer-
ences based on rates of increase, especially given the
explosion of ecological and evolutionary theory whose
validationrests on the comparative study of such rates.
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APPENDIX
Proof 1

S b = m 5‘, ¢ By =, i ¢~ By;.
=0 i x=0

i i

By definition,
B = 2 mByiloy,
so that
02Bs = D, WiBxi.
i
Therefore,

S mdi =S 6708 = b.
r=0

i

Proof 2

Given ¢; > ¢,. Since ¢ is the mean of the ¢; (see Proof 1),
then ¢p; > ¢ > ¢,.
By definitions,

©
—(x+1 —
Fl (x )Bxl 1 s

x=0

and
2 ¢7IB11 = ¢1~
=0
Dividing the latter equality by ¢, we obtain

S ¢, = g6 > 1= 3 FreUB,,
x=0

r=0

Negative exponents reverse an inequality, so if ¢ = F;, then
¢—(1‘+1) = Fl—(.l‘+1)

for all x = 0. This clearly violates the preceding inequality,

so F; must be >¢.
By definitions,

F,"*B,, = Fy,

: \

i ¢7IB.7:1 = d’l'
x=0

M

x

and
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We have shéwn ‘that F; > ¢, so that by the rule of negative
exponents, F; must be <¢,.
By parallel arguments, ¢ > F, = ¢,.

Proof 3
By definitions,
F* = NFy — (N — DF_;,
and
F* =3 F*/N = NFy — (N — DF_;.
Therefore, the sample variance of the F*; is

var(F%) = 3 (F% — FOWN - 1)
=S AN = DEF-; ~ F-)PN =

=WN-1 2 (f—i —F_;p.

The variance of the F_; is given by

var(F_;) =3 (F_; — F_2/(N - 1).

Therefore,
var(F*) = (N — 1)?var(F_;).

Recall that each F_; is based on N — 1 observations, and
furthermore that all pairs of F_; share, by definition, all but
one of these N — 1 observations. Therefore,

var(F_;) = (N — 1)“?var(F;),
and
var(F*) = var(F;).



