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SUMMARY

Initially identical populations in identical environments may subsequently diverge from one another not
only via the effects of genetic drift on neutral alleles, but also by selection on beneficial alleles that arise
stochastically by mutation. In the simple case of one locus with two alleles in a haploid organism, a full
range of combinations of population sizes, selection pressures, mutation rates and fixation probabilities
reveals two qualitatively distinct dynamics of divergence among such initially identical populations. We
define a non-dimensional parameter £ that describes conditions for the occurrence of these different
dynamics. One dynamic (k> 1) occurs when beneficial mutations are sufficiently common that
substitutions within the populations are essentially simultaneous; the other dynamic (£ < 1) occurs when
beneficial mutations are so rare that substitutions are likely to occur as isolated events. If there are more
than two alleles, or multiple loci, divergence among the populations can be sustained indefinitely if £ < 1.
The parameter £ pertains to the nature of biological evolution and its tendency to be gradual or

punctuated.

1. INTRODUCTION

How reproducible is evolution, and in particular
adaptive evolution? Gould (1989) proposed a thought
experiment of ‘replaying life’s tape’ to address this
question. He suggested that:

any replay of the tape would lead evolution down a pathway
radically different from the road actually taken ... Each step
proceeds for cause, but no finale can be specified at the start,
and none can ever occur a second time in the same way,
because any pathway proceeds through thousands of im-
probable steps.

Rigorous experiments on the predictability of evolution
using organisms with short generations, such as fruit
flies and bacteria, demonstrate that: (i) the random
origin of mutations, either alone or in concert with
genetic drift, can cause unpredictability; and (ii) sub-
stantial divergence of (initially identical) replicate
populations in identical environments can occur even
for traits that are subject to strong selection (Cohan &
Hoffmann 1986, 1989; Lenski et al. 1991; Bull &
Molineux 1992; Bennett & Lenski 1993; Yin 1993;
Korona et al. 1994 ; Lenski & Travisano 1994; Vasi et
al. 1994; Travisano et al. 1995). We wish to comple-
ment these experimental studies of adaptation and
divergence with theoretical analyses of their dynamics,
beginning with the very simple case that we have
analysed here.

To explore effects of random and non-random
factors on the dynamics of adaptation and divergence,
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we model the collective replacement process of one
allele by another across a set of populations in a
metapopulation, as opposed to the more familiar
replacement process within a single population. The
non-random factors in the model include population
size and the strength of natural selection; the random
factors include genetic drift and the spontaneous
appearance of mutations. To describe the nature of
collective replacement, we analyse the general features
of the model.

2. THE MODEL

We consider a haploid organism having two alleles
and hence two genotypes, 4 and B, at a single locus. A
metapopulation of these organisms consists of initially
identical and genetically homogeneous populations.
The populations evolve independently in separate but
identical environments (without migration). The size
N of each population is constant and selection is soft
(Wallace 1968), with relative fitness values of 1 and
14§ assigned to genotypes A and B, respectively,
where § > 0 is a constant selection coefficient. Because
the relative fitnesses are constant, selection is neither
density- nor frequency-dependent. The rate of forward
mutation is p,, (from genotypes 4 to B), and the rate
of backward mutation is zero. Because genotype B has
a higher fitness value than genotype 4, back mutation,
even at reasonably high rates, is an insignificant factor
with respect to the processes of adaptation and
divergence considered here.

© 1995 The Royal Society
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In each population the number N, of individuals
having genotype A and the number N having
genotype B change through time as follows. Initially
each population contains only individuals of genotype
4. Genotype B arises in each population by mutation,
but due to genetic drift, a population may lose a
particular mutation to genotype B before it becomes
common. If a mutation to genotype B occurs in a
population and is ‘successful” (not lost while still rare),
natural selection acts to replace genotype A with B.
Thus, by means of mutation and natural selection,
allele B, although initially absent, eventually becomes
fixed in each population and therefore in the meta-
population.

Until a successful mutation (genotype B) appears in
a population, its mean fitness @ remains at 1, which is
the relative fitness of genotype 4. After the population
receives a successful mutation, @ increases mono-
tonically if the size of the population is large enough
that drift is not a significant factor. The waiting time
for a ‘successful’ mutation to appear in a given
population includes two random components: the
timing of mutations and random genetic drift. The
latter determines whether a mutation succeeds or is
eliminated: if a mutation is eliminated, then a wait for
another ensues.

Let the random variable 7 denote the time when the
first successful mutation appears in a population.
Before time T (i.e. t < T), N,(f) = N and Ng(¢) =0,
and at the instantof 7' (i.e.t = T), N,(T) = N—1 and
Ny (T) = 1. Because T is a waiting time, we take it to
be a non-negative, continuous random variable with
standard exponential probability distribution

JT) = papow Netan, (1)
where the product u,,wN is the effective rate of
mutation from genotype 4 to B. The expected waiting
time 7 is 1/(u,zwN). The parameter w is the
probability of a mutation to genotype B becoming
fixed, which is typically proportional to its selection
coefficient (Haldane 1927; Moran 1962). If the number
of populations in the metapopulation is sufficiently
large, then regardless of how small the population size
N happens to be, the random variation between
populations in waiting time due to the random effects
of drift, apart from that which is accounted for by w,
can be ignored with regard to the dynamics of the
metapopulations. All of our simulations include 10000
populations in the metapopulation.

The product U = p,,w is the per capita rate of
successful mutations, which represents the contribution
of random factors (mutation and genetic drift) to the
among-population variance for mean fitness v(w) and
to the grand mean fitness @, which is the mean of the
mean fitnesses (@’s) across populations. Because the
size of cach population is regulated to the same
constant equilibrium value N, the mean fitness for the
metapopulation is @.

3. ANALYSIS AND RESULTS

To analyse the model, we use a quasi-Monte Carlo
method for obtaining w and v(@). To illustrate, suppose
there are 10000 populations in a metapopulation. For
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Figure 1. Trajectories describing the evolution of a meta-
population containing ten thousand populations. The selec-
tion differential §'= 0.1, population size N = 10', and
average rate of successful mutations U = 107® per generation.
The rate of effective mutation UN is 100 mutations per
population per generation. (a) The trajectory for the grand
mean fitness w ascends exponentially; () the trajectory for
the slight among-population variance in mean fitness v(@) is
transient and resembles a spike; and (c¢) the trajectory of the
cumulative among-population variance in mean fitness V(¢)
is similar to that of @.

each population we draw a waiting time 7 from the
probability distribution described by equation (1).
Then, for each time ¢ in a sample of times, we compute
the mean fitness @(¢, T') for each population, using
equation (10) in Appendix 1.

From these mean fitnesses, the trajectories (see figure
1) for w, v(w) and

t
V() = f v[w(z)]dz
0
are easily calculated. The accumulation V(¢) of among-
population variance for mean fitness to time ¢ reflects a
potential for divergence within the metapopulation. As
discussed later, this potential can include sustained
divergence if other collective replacements (involving
other pairs of alleles) are in process.

Upon receiving its first successful mutation, each
population in the metapopulation then contributes to
a monotonic increase in w, which eventually ap-
proaches and sustains indefinitely the maximum fitness
of 1+ (see figure la). However, v(w), which is by
definition zero at ¢=0, cannot be sustained
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Figure 2. A depiction of (a) coincident-event and (&) isolated-
event collective replacement when there are just four
populations in a metapopulation: (a) The rate of recruitment
UN is high and the selection coeflicient S; small (slow within-
population replacement); £ is about ten. Conversely, in (&)
the rate of recruitment is low and S, is large (rapid within-
population replacement); £ is about 0.5. Graphs show grand
mean fitness for the metapopulation (thick lines) and mean
fibres for a single population (thick lines).

log(V () / )

Figure 3. The effects of S and UN on a mean rate V(ty)/ty of
increase in V(¢) to time t;;. The ridge on the graph corresponds
to cases when £ = 1, as shown by the line, and separates the
regions of coincident-event (left, £ > 1) and isolated-event
(right, £ < 1) collective replacement. The metapopulation
contains 10000 populations of size N = 10%. The graph is
truncated at the bottom because computations below those
points involve small values that result in substantial computer
rounding errors. We assume that the graph continues down
so that V() /¢, approaches zero as UN continues to increase
and § to decrease.

indefinitely. The height of its trajectory increases for a
time, and then returns to zero (see figure 14) as B
replaces 4 in all populations. That is, with only two
genotypes, there is but one evolutionary route for every
population, namely, replacement of genotype 4 by
genotype B.

The selection differential S is the principal deter-
minant of the duration of within-population replace-
ment once a successful mutation from genotype 4 to
B has occurred for a population. The recruitment rate
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for a collective replacement process across populations
is the rate at which the populations in a meta-
population obtain a first successful mutation, and
therefore proceed to carry out within-population
replacement. In our model, the rate of effective
mutation, that is, the product UN, reflects the rate of
recruitment. Together, the rate of recruitment and the
duration of within-population replacement define two
distinct forms of collective replacement: coincident-
event and isolated-event.

The form of collective replacement depends on the
proportion of populations that are simultaneously in
the process of replacement. Recruitment is rapid (high
UN) and the within-population replacement process
slow (low §) in coincident-event replacement, so that
almost all of the populations in the metapopulation are
In transition simultaneously (see figure 2a). By
contrast, in the isolated-event form, only a tiny fraction
of the populations undergo replacement at the same
time (see figure 24) because recruitment is slow (low
UN) and selection, which drives replacement within a
population, is fast (high ).

We approximate quantitatively the form of collective
replacement as follows. From equation (10) in the
Appendix 1, we obtain the time

T = 1og [(N—1)/2]/7,p. (2)
that it takes for a population to reach halfway to the
maximum mean fitness (i.e. @ = 14+5/2). Here r,, is
the rate of selection (r,, = m, S =mz—m,), where m,
and my are the malthusian parameters for populations
4 and B, respectively. The product of the rate UN of
successful mutations for a population and the time
(= 274) required for the replacement process, once
initiated, is

k= UN21yy = pyswN-2log, [(N—1)/2]/r,p (3)

which is non-dimensional. Stated differently, £ is the
time required for within-population replacement by a
given genotype divided by the waiting time for a
successful mutant of that genotype. If one assumes, as
we have for our simulation models (see Appendix 1),
that the time units are scaled such that the malthusian
parameter m, = 1, then m, .S can be substituted for the
denominator 7,, in equation (3).

Let t; denote the time when genotype B has reached
halfway to fixation in the metapopulation [i.e. when
w=1+S8/2]. Then [V(ty)]/ty is an average rate of
increase in V(¢) to time . Because the two forms of
collective replacement represent distinctly different
amounts of accumulation of among-population vari-
ance in mean fitness within the duration (& 2t;) of the
replacement process, [V(ty)]/ty clearly distinguishes
between the two forms, as shown in figure 3. A definite
ridge at £ = | separates the parameter space into two
distinct regions.

In the coincident-event region, which is on the left
side of the ridge, £ becomes much greater than 1.0, and
log [V(ty)]/ty decreases linearly as log S decreases and
log UN increases. In the isolated-event region, which is
on the right side of the ridge, £ is much smaller than 1.0,
and log [V(¢4)]/ty increases linearly as log ' increases,
but remains constant for different values of log UN.
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During isolated-event collective replacement, most
populations are either waiting for a successful mutation
(w =1, the minimum) or have already completed the
replacement process (w = 1 + S, the maximum). There-
fore, most pairs of populations either do not differ in
mean fitness or differ maximally by the amount S. This
means that throughout an isolated event collective
replacement process (k < 1), variation between popu-
lations is virtually the maximum possible for the
number of populations recruited. In contrast, through-
out the process of coincident-event collective replace-
ment (k> 1), variation in mean fitness among popu-
lations tends toward the minimum for the number of
populations recruited. Hence, for a given value of S,
values for [V(t4)]/ty (figure 3) and V(¢(y) are highest
when collective replacement is isolated-event.

4. DISCUSSION

The replacement in a single population of an inferior
allele by a superior allele is a fundamental unit for
organic evolution (Spiess 1977; Ewens 1979), and it
has therefore been studied extensively. But collective
replacement across a set of initially identical popu-
lations, which extends this fundamental unit to
metapopulations, has not been previously studied. Yet
such collective replacement provides an indication of
the ‘reproducibility’ (and hence predictability) of the
replacement process, and the dynamics of collective
replacement may thereby encompass the contributions
of natural selection, chance events, and historical
constraints to the processes of adaptation and di-
vergence.

For coincident-event collective replacement (£ > 1),
the non-random factor of natural selection is virtually
the sole determinant for the trajectory of the genetic
composition of any of the populations. When
coincident-event collective replacement occurs, each
population acquires its first successful beneficial allele
almost immediately because the population size and
mutation rate are large. Hence, predicting the genetic
composition of a particular population in the meta-
population during the collective replacement process
only requires knowledge of the selection coefficient,
which determines the rate of replacement within a
population.

In contrast, for isolated-event collective replacement
(k < 1), random factors largely determine the gene
frequencies for any given population. Timing of
mutations and genetic drift determine when the first
‘successful” beneficial mutation occurs in a particular
population. This makes predicting the genetic com-
position of any given population difficult, and knowing
the selection coefficient is of little help.

Note that if the selection coeflicient is held constant,
population size largely determines the form of collective
replacement for a pair of alleles in a metapopulation
because the effective rate of mutation scales with
population size. Thus population size plays a large role
in determining the relative importance of random and
non-random factors in the evolution of adaptive as well
as neutral traits.
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The form of collective replacement that underlies
the development of variation among populations may
also determine whether divergence will be transient or
sustained. For the simple case that we have analysed
(one locus with two alleles), from any starting point
there is only one possible evolutionary path for each of
the replicate populations. Although the populations in
the metapopulation can differ in the time elapsed
before the superior allele becomes fixed, their final
state is identical, namely, genotype A replaced by
genotype B. Consequently, among-population vari-
ance in mean fitness v(@w) is necessarily transient.
However, when there are more than two alleles, either
at one locus or several loci, more than one evolutionary
path with distinct endpoints may be available to the
replicate populations. In such cases, »(w) can be
sustained indefinitely because different populations
can ascend and become stuck on different adaptive
peaks (see also Mani & Clarke 1990), provided that
collective replacement is isolated-event.

For example, consider a simple case in which there
are three alleles 4,, 4,, and A4,, with relative fitnesses 1,
1+8, and 1 + T, respectively, where 7' > § > 0. Let
be the mutation rate from 4, to 4;, and suppose that
Mys = py3 = p and all other u,; = 0. Thus there are two
stable equilibria representing disconnected adaptive
peaks of unequal height with no route between them.
Letting the initial frequency of 4, be 1 in all replicate
populations, then w = | and the v(@) = 0 at the onset.
If the effective mutation rates are sufficiently low
(given the selection coeflicients S and 7) so that
collective replacement occurs as isolated events, then a
replicate population may become stuck at the sub-
optimal peak (1+4S), if 4, replaces 4; before a
successful mutation to 4, has occurred.

Although p,, = g, in this simple hypothetical case,
a population is more likely to end up at the higher peak
(1+ T) due to the greater likelihood of fixation for a
beneficial mutation with large effect than one with
small effect (the one of smaller effect being more likely
to be lost due to random drift). Given that the
probability of fixation of a beneficial mutation is
roughly proportional to its selective value (Haldane
1927; Moran 1962), then if collective replacement is
isolated-event, fractions p = 7/(T+S) and 1 —p of the
subpopulations are expected to end up at the higher
and lower adaptive peaks, respectively. In this case, the
asymptotic value of w, namely

lim@() =p(1+T)+(1—p) (1+S) (4)
t—> 00

lies between 14§ and 14 7, and the asymptotic value
of v(w)

lim [v(@w()] = p(1+ T—@)2+ (1—p) (1 +S—m)* (5)

=p(1=p) (T=S5)*
TS[(T—S)/(T+5)]?

lies between zero and the product T'S.

Thus, when collective replacement is isolated-event,
the random origin of mutations, either along or in
concert with random genetic drift, can theoretically
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lead to sustained divergence of formerly identical
populations in identical environments, even for
selectively important traits. In contrast, if collective
replacement is coincident event, then the most fit allele
will usually appear and win in every population, so
that there is no opportunity for sustained divergence
among the populations of the metapopulation.

In the above illustration of sustained divergence
there are two elementary (i.e. two-allele) collective
replacements taking place at the same time: allele 4,
replacing 4,, and allele 4; replacing 4,. Suppose we
consider all the possible elementary collective replace-
ments that are in process at a given time within a
metapopulation. Each such replacement contributes
among-population variation within the metapopu-
lation, and each can increase the probability that all or
some of that variation is sustained indefinitely. The
overall contribution of an elementary collective re-
placement process to sustained divergence among
populations within a metapopulation is a mono-
tonically increasing function of the integral V(¢), or of
a similar integral for a trait other than mean fitness.

The divergence of initially identical populations
subject to identical environments can be examined by
rigorous experiments using fruit flies, bacteria and
other organisms with suitably rapid generations.
Several such experiments have shown that random
mutation and drift can cause substantial divergence
among replicate populations in important traits, even
including mean fitness (Cohan & Hoffmann 1986,
1989; Lenski 1988; Korona et al. 1994; Lenski &
Travisano 1994; Travisano ef al. 1995). In nature,
there is usually some migration between populations
and we therefore expect that many local adaptations
would have been wiped out in competition with better
solutions that were independently derived in other
populations (Crow et al. 1990; Wade & Goodnight
1991). Even with this bias against detection of this
phenomenon in nature, many different populations of
the same species appear to have independently evolved
somewhat different adaptive solutions to the same
selective challenge (Gould & Lewontin 1979; Cohan
1984).

Collective replacement addresses questions of global
evolutionary change. The non-dimensional parameter
k may be useful in describing when evolution tends to
be gradual (k> 1) or punctuated £ < 1), and in
assessing what proportion of genetic variation among
populations is sustainable, and therefore can contribute
to phylogenetic divergence. This theoretical study and
that of Mani & Clarke (1990) are first steps towards
formalizing the dynamics of collective replacement. By
extending this theoretical framework to more complex
situations involving multiple alleles and loci, we hope
to complement on-going experimental studies of the
long-term evolutionary dynamics of initially identical
populations of bacteria (Lenski et al. 1991; Korona et
al. 1994; Lenski & Travisano 1994; Vasi et al. 1994;
Travisano et al. 1994).
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APPENDIX 1

Here we consider a single population. Let m, and my be the
malthusian parameters for genotypes 4 and B, respectively.
The mean malthusian fitness is m = (m, N, +my Ny)/N.
Multiplying 7(¢) by the constant 1/m,, we obtain a corre-
sponding mean relative fitness @ = m/m, = 1+S(Ny/N)
for the population. The malthusian fitnesses m, and m, and
also the rate of selection (r,, = mz—m,) have units of inverse
time, whereas relative fitness is non-dimensional. Because the
selection coefficient § = (mz—m,)/m, = r,,/m, is also non-
dimensional (and constant), we assume that the time units
are scaled such that m, =1 and @ = m/m,.

We denote by N,(¢; T) the number of individuals in
genotype B for the population at time ¢, given that a value for
time 7 has been drawn from its probability distribution.
Before a successful mutation occurs (¢ < T'), several un-
successful mutations may appear and then disappear due to
genetic drift. For practical purposes, Ng(t; T) =0 when
t<T. Once a successful mutation occurs (¢t>= T'), the
expected change in Ny(¢; T') is described by the equation of

genotype dynamics for soft selection:
A/dEN, (63 T) = 1, Nyt T) [1= N, (t; T)/ N]. (A1)

Integration of equation (6) gives the expected number of
individuals of genotype B at time ¢, that is
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Ny(t50) = [N Ng(T® T) ¢a5™7]

JIN—=Ny(T; T)+ Ny(T; T)e"4sD],  (42)

where N, (7T;T) denotes the number of individuals of
genotype B when ¢t= T; namely, N (T;7T) = 1. Conse-
quently, we may rewrite the equation as

Ny(t; T) = N/[1+ (N—1) ¢ rast=1], (A 3)

This is a strictly deterministic model of the expected increase
in Ng(¢; T) when a mutant is destined to become fixed.
Actually, the expected increase in N,(¢; 7)) tends to be
slightly faster in models that are not strictly deterministic, but
in this paper we forego the complicated mathematics for the
distribution of the required acceleration factor. With regard
to our results, the inclusion of such a factor would cause a
slight shift toward isolated-event collective replacement.

The mean relative fitness for a population can now be
expressed as

w(t; T) =1+ (S/N) Ng(t; T). (A 4)
When t< T, Ngy(t;T)=0 and @(¢;T)=1; and when
t = T, we use equations (8) and (9) to obtain the equation
w(t; T) =14+8/[1+ (N—1) 4] (A5)

for computing the mean fitnesses of a population that has
obtained a successful mutation at time 7.



